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Abstract —This paper presents an efficient tecfndque for the numericaf

determination of v&age “md cnrrent waveforms when a microwave circuit

containing one or more nonlinear elements is excited by a single frequency

source. The approach described here is rearNy applied to microwave

networks represented by a large nnmber of equivalent circuit elements,
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either lumped or dktributed. A significant feature of this paper is the

detailed investigation of the problem of convergence, rising this new

technique. The generality of the techniqne is illustrated through its applica-

tion to studies of the excitation of varactor, Schottky-barrier, and IM-

PATT diodes in waveguide circuits. In addition, the relationship of this

method to the multiple reflection approach is discussed and the conver-

gence mechanism of this reflection technique is studied.

1. INTRODUCTION

T HIS PAPER reports a general method for the analysis

of microwave circuits which contain a sinusoidal source

and one or more nonlinear devices. It is applicable to the
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study of a wide range of microwave circuits including

mixers, parametric amplifiers, and harmonic generators. A

special feature of the approach presented here is its de-

tailed consideration of the problem of convergence in the

iterative solution process, and its provision for modifica-

tion of the general procedure to facilitate convergence with

any specified circuit.

The analysis of this class of microwave circuit has relied,

in the main, upon the short-circuit or open-circuit assump-

tions, pertaining to the impedance of the circuit, at

harmonics of the excitation frequency, viewed from the

(single) nonlinear element terminals. Such an assumption

greatly simplified the analysis, since it leads to sinusoidal

voltage or current flowing through the nonlinear element.

Unfortunately, this assumption can rarely be justified in a

practical microwave circuit, due to the periodicity of dis-

tributed-element impedances as well as to multimode prop-

agation at harmonic frequencies. Thus in the general case,

both voltage and current through the nonlinear element are

nonsinusoidal, when the circuit is excited by a sinusoidal

source.

The determination of these nonsinusoidal waveforms

will have a direct influence on computation of the conver-

sion loss (or gain) and noise performance of microwave

mixers, the stability and noise properties of parametric

amplifiers, and the efficiency of harmonic generators. To

an increasing extent, circuits are being designed using a

multiple number of nonlinear elements (e.g., subharmoni-

cally pumped balanced mixers), and studies are being

carried out using a device representation which includes

several nonlinear elements (e.g., junction resistance and

capacitance in a Schottky-barrier diode, series resistance

and junction capacitance in an expitaxial varactor). When

the nonlinear element is embedded in a circuit containing a

small number of lumped linear elements, the nonsinusoidal

waveforms can be determined by a time-domain integra-

tion of the network equations, carried over a sufficient

number of cycles to allow steady-state conditions to be

attained. However, this approach is impractical for most
realistic microwave circuits, where the equivalent circuit of

the linear network may well contain a large number (e.g.,

hundreds) of lumped and distributed elements. For this

reason, in recent years, other numerical approaches have

been developed for the accurate study of the excitation of

nonlinear microwave circuits. These methods divide broadly

into two categories: time-domain solutions. and the
harmonic balance approach.

Time-domain solutions were initiated by Fleri and Cohen

[1] who studied pumped resistive mixer diode waveforms.

Their analysis, while it indicates the voltage waveform is

far from sinusoidal, is highly simplified. In particular, the

pump-source equivalent circuit is taken as resistive, and the

complexities of diode packaging are largely ignored. The

generality of this approach was improved through the work

of Gwarek [2] who was able to replace an arbitrary em-

bedding network by a single lumped-element network in

series with a set of appropriately phased, harmonically

related voltage sources; convergence problems, however,

occur with this approach.

Harmonic balance approaches combine a Fourier analy-

sis for the linear embedding network with a time-domain

approach for the nonlinearity. An iterative procedure is

then devised which balances (or equalizes) the harmonics

in both the nonlinear and linear circuits. With the assump-

tion of linear junction capacitance, Egami [3] analyzed a

pumped mixer diode but found the convergence properties

deteriorated significantly when more than two or three

harmonics were considered. Gupta and Lomax [4] attacked

the diode pumping problem by employing a variation of

the harmonic balance approach in which voltage waveform

estimates are updated until a stationary solution is

reached; convergence problems appeared and remained

unsolved. Kerr [5], [6] has achieved convergence for a wide

range of circuits using the multiple reflection method,

which requires insertion of a transmission line between the

nonlinear and linear sections of the circuit. However, the

complexity of the Kerr calculations together with the desire

for deeper understanding of the convergence process,

motivate further investigation. Hicks and Khan [7] have

studied the problem by introducing a set of dual update

algorithms together with a convergence parameter. Based

on experience, satisfactory convergence rates are obtained

by this method.

None of the above methods has yet provided a detailed

convergence assessment to assist the user by providing

prior information on the likelihood of convergence. It is

clear that for the purposes of efficient automated nonlinear

computation, the analysis algorithm and convergence

mechanism should be thoroughly understood.

The purpose of this paper is to further develop and

expand the method previously presented [7], in order to

provide a detailed convergence assessment which will assist

the user by providing prior information on the likelihood

of convergence. The insight gained by this means is prere-

quisite to efficient automated computation of nonlinear

microwave circuit behavior.

II. NUMERICAL ANALYSIS METHODS

A. Voltage Update Method

The method described here is applicable to the analysis

of the general circuit shown in Fig. 1, where a network

containing linear and nonlinear elements is excited by a

sinusoidal source E(t). As shown in Fig. 1, the circuit is

divided into two parts, one of which contains the nonlinear

elements (as well as some linear elements for convenience)

while the other part contains the remaining linear elements

and the exciting source.

The analysis begins with selection of an estimated VN(t )

value, designated VON(t ); this value is usually taken at the

exciting frequency, without harmonics, and may be found

by an approximate calculation. Using VON(t), the corre-

sponding periodic current ION(t) is found by a fourth-order

Runge–Kutta method, unless there is a suitable analytical
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‘(’)=
Fig. 1. Division of the. general microwave circuit containing nonlinear

elements.

expression available. Typically, 128 points are considered

in the computation, allowing consideration of harmonics in

II(t) up to the sixteenth order with minimal truncation

error in the Runge–Kutta integration.

Putting If(t) = – l](t), we can use the fast Fourier

transform to obtain 1:(o), which is applied to the linear

network. P&( u) is found by superposition, having compo-

nents due to 1;(u) and to the applied E(t); the calculation

is quite straightforward, since the network is linear.

Using an inverse fast Fourier transform we form J&(t)

and compare it with the initial VO~(t).If the difference is

significant, the iteration proceeds with a new estimate of

V~(t), designated by V~(t),and continues until the dif-

ference is sufficiently slight. The iteration procedure is a

stationary one and therefore V1~(t)= J&(t)= VON(t) at

solution.

It remains now to specify how the new estimate is

‘ determined at the beginning of each successive iteration. At

the k th iteration, consider a general

~=—Jf

(where M has been set by the Runge-Kutta calculation)

and the corresponding

M

which is determined by the process described above. The

next iteration is carried out with a V~~+,(t) having compo-

nents

where the p. values are determined by convergence consid-

erations, discussed below, and O<p. <1. The use of a set

of p. values, described here as “convergence parameters”,

is a distinguishing feature of the method presented here

and is an essential feature in ensuring convergence to the

required solution.

1) Convergence: Let the true value of the voltage V~(t)

be
M

Then V~~ = V.T + e~. where c~. is the error term. Likewise
V~ , . = V.=+ c(~+ ,J. after one additional iteration.(k+>

~ (t), by definition, must satisfy the circuit constraints

and thus

where

v:

z:

z;

253

contribution due to the source voltage,

impedance presented by the linear network at the

n th harmonic frequency in the absence of any

source, and

impedance presented by the nonlinear network at

the n th harmonic frequency as shown in Fig. 1.

Clearly, the value of Z: will vary during the iteration

process by virtue of the nonlinearity. With each iteration,

Z: changes until, in the case of the harmonics free from

source voltages, it reaches – Z: at the solution. For the

purpose of the convergence analysis, it will be assumed

that the iterations are close to the solution and thereby Z:

changes only slightly. This strategy may be justified in two

ways. Firstly, an iteration close to the solution should not

diverge. Secondly, for iterations far from the solution, a

convergence region (discussed below) sufficiently large to

cover any variations in the Z: may be obtained by ap-

propriately setting the convergence parameter pn. Now

L;

=v+(vnT+ckn)
n

z:
=–—ckn+vnT

z;

using V~T= V~s— $ vnT
n

.“. V’’’(k+l)n

( ZL )z; +q- +(l–pn)(J’j+ckn)‘P. – “kn

n

. .
which yields directly, by substituting for V(l+ 1)~~~(~+ 1)~=

M.vc~. where M.v is the error magnification factor for the

n th harmonic component with the voltage update method,

and is given by

()Aq=l+pn –1–~ .
n

It is evident that we require IM.v I <1 for all harmonics

of interest to assure convergence of the iterative process.

The speed with which convergence is obtained will also

increase as the value of IM.v I is decreased.

Note that the set of Z: values will vary during the

iteration process, because of the nonlinearity of the circuit

elements. Hence any estimate of Z; for convergence de-
termination should be made on a “worst case” basis.

Insight into the choice of p. for convergence may be

obtained by plotting a set of curves of [M.v I = 1 on an

impedance ratio plane defined by W. = Z~/Z~ as shown

in Fig. 2. The curves are a set of circles with center
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IIm(Wn)

UNIT
CIRCLE

3*

h
● *I

(-1,0) 0 Re(Wn)

Fig. 2. Expansion of the voltage update convergence region due to

changes in the convergence parameter pn. The symbols (*) indicate a

possible distribution of the first five harmonic impedance ratios (con-

jugates not shown).

Im(Wn)

\

<

CIRCLE

Fig. 3. Optimum reaf pn for minimum M. is given by cos @/r, where 9 is
the angle between the line w.,4 and the real axis; r N the length of

WnA.

(– 1+ (1/P.),0) and radius l/P., proceeding tO the half-
plane Re(WH ) = – 1 in the limiting case of p. + O.

Using this diagram, the required p. values for conver-

gence are readily found, plotting W. values for the harmon-

ics of interest, and selecting a pn set so that each W. point

lies within the pti circle. In practice, it is usually possible to

select a convergence parameter p which is used for all

values of n. It is also possible to change the value of p as

the calculation proceeds, and Z: more closely approaches

its true value; the purpose of this change is to make the

values of the IM.v I set as small as possible.

B. Current Update Method

There are many instances where the form of the nonlin-
ear device characteristics is such that it is preferable to use

current II’”(t) as the independent variable rather than volt-

age V~(t ). The resulting current update approach proceeds

as the dual of the voltage update method, and is hence not

described in detail.

It gives rise to an error magnification factor M; defined

by

‘(k+ l)n = M+kn

with the value of IW; determined by an approach similar to

that used for M.v.

We find

()ftq=l+pn –1–~ .
n

Hence we can plot a set of curves of [M: I= 1 on an

impedance ratio plane defined by Z~\Zj = 1/ W.. The

curves on the 1/W. plane are similar to those shown in

Fig. 2 on the W. plane, and the selection of the p. set

values proceeds in a similar manner to that for the voltage

update method. Note that if W. lies outside the circle of

convergence for a specified p., with the voltage update

approach, it will lie within the convergence circle for the

same p. value if the current update method is used.

C. Selection of the Convergence Parameters pn

In both update methods, there is an optimum real p.

which minimizes the magnitude of each M.. By simple

calculation, this p. is given by cos 9/r, where 6’ and r are

defined in Fig. 3. However, the methods may be further

extended by permitting p. to become complex. This intro-

duces the ability to perform phase rotations in the W.

plane. With this modification, given any W., M. may in

principle be set to zero. However, it should be noted that

the error will not be zero following this iteration as the

nonlinearity will present a different Z: at the new oper-

ating point. Thus, although the new error is nonzero, it is

considerably reduced.

It is clear the calculations of Z: are necessarily ap-

proximate by virtue of the nonlinearity. Thus, as the itera-

tions proceed, the W. points will move across the plane. In

the case of harmonics above the fundamental, the W.

points will all move towards the solution point (– 1, O), a

condition which may be verified by Kirchoff’s circuit laws.

For most practical situations, the following guidelines

will ensure convergence. An examination of the linear

circuit impedances at the high harmonics will determine

which of the update methods should be used, i.e., large

linear circuit impedances above the fundamental require

the current update approach. Having selected the ap-

propriate update approach, each complex p. can be calcu-

lated such that M. is set to zero. However, tests have

shown that the advantages of using complex p. over real p.

are slight, resulting in only marginal improvements in

efficiency in practical situations. Moreover, rather than use
the optimal real p. given in Fig. 3, a value of p, which is

valid for all n, may be used. Although this situation is

clearly not optimal, this simplification has been found to

produce relatively efficient convergent conditions in most

practical situations encountered.

III. IDENTITY NETWORKS

Modifications of the basic harmonic balance approach

are possible by introducing a special class of networks at

the nonlinear–linear circuit interface (Fig. 4). The purpose

of these networks is to preserve the overall circuit perfor-

mance while altering the harmonic impedance ratios to
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‘ IDENTITYI NETWORK

(a)

I

I

I

NETWORK

Fig. 4.

(b)

Identity networks: (a) voltage update identity element; (b) cur-
rent update identity element.

m~L —

‘SOURCE - t. ‘“

(a)

V-F’-TT
I

LINEAR ; NON-LINEAR

(b)

Fig. 5. Application of an Identity element: (a) pumping circuit with a
current modulated nonlinear resistance: RN= 10(1+1) 0, RL = 1 Q,
v,Ou,~= cos ( tit ); (b) addition of the current update identity element.

improve the convergence rate. The term “identity network”

is introduced to describe networks which satisfy tljs prop-

erty. Identity networks may be subdivided into two classes,

viz, lumped and distributed.

A. Lumped Identity Networks

Two examples of lumped identity networks are shown in

Fig. 4. To utilize them, these networks are bisected with

one of the identity elements assigned to the linear one-port

and the matching identity element included in the nonlin-

ear network. For ease of nonlinear circuit computation, the

network depicted in Fig. 4(a) is suitable for voltage update

solutions while that of Fig. 4(b) is more convenient to use
with current update solutions. These networks maintain the

overall circuit performance but alter the harmonic imped-

ance ratios and thereby the convergence rates.

The following example illustrates the use of a current

update lumped identity element. A nonlinear element is fed

from a simple resistive voltage source shown in Fig. 5(a).

The resistance of the nonlinear element consists of a fixed
10 S? together with a current modulated value of 101 Q,

where I is in amps.
It would be advantageous to use a current update ap-

proach so that the nonlinearity could be handled without

resorting to the use of quadratic equations. Without mod-

R,olfl) —

Fig. 6. Convergence rate versus the identity element value. Convergence
was deemed to have occurred when the error became less than 0.1
percent.

~..~..

~*-”]
LINEAR NON-LINEAR

nth HARMONIC

Fig. 7. Distributed identity element.

ification, the circuit requires a voltage update approach as

the harmonic impedance ratio RL/RN is approximately 0.1

for all harmonics. However, the problem may be trans-

formed to a current update problem with an identity

negative resistance of the order of — 10 Ll as shown in Fig.

5(b).

The circuit was analyzed as described and Fig. 6 depicts

the dependence of the current update convergence rate on

the identity element value. For small values of RID, the

circuit problem is a voltage update candidate and therefore

the solution diverges on using the current update algo-

rithm. Larger values of R ID, however, ensure current UP-

date convergence with an optimum value of R ~~ being

approximately – 10 Q

B. Distributed Identity Elements

Distributed identity elements may also be used in a

similar way to their lumped counterparts. The Kerr [5]

multiple reflection method of circuit analysis may be re-

garded as an update harmonic balance method in which
use of these distributed elements is exploited. A lossless

transmission line is inserted in cascade at the circuit inter-

face (Fig. 7), its electrical length being set at an integral

number of pump wavelengths to preserve the steady-state
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solution. The presence of a distributed element requires

that both the voltages and currents be updated simulta-

neously in the iteration process. Kerr [5] details the algo-

rithm necessary to compute the voltages, currents, and

propagating waves. By suitably rearranging Kerr’s equa-

tions, it can be shown that successive voltage and current

iterates are given by

J(:+ ~)n =

Z.

ht’vk: + z + ZL ‘ns

On

l(~+l)n = L N N‘npn~k”+(Zo+ Z;;zo+ z:) ‘s”
The reflection coefficients are defined in the usual way,

viz.,
z: – Z.

P:=
z: -1-Z.

z: – Z.

P:=
z;+ Z.

where Z. is the characteristic impedance of the transmis-

sion line. Clearly, the successive errors as convergence is

approached are given by

‘(k+ l)ri = P;P;~ kn

and thus convergence is assured if the products pfpf fall

within the unit circle. This condition applies for most

stable systems and thus the Kerr method has been reported

to have satisfactory convergence properties [6]. Since Z. is

arbitrary, the convergence process can be optimized by

adjusting its value; from estimates of the range of values

taken by Z: during the iteration process, Z. would be

chosen such that the maximum value of the products

/pjp~ / is minimized.

The parameter p. used in the basic update approaches

may also be introduced into the multiple reflection ap-

proach. The error magnification coefficient with the addi-

tion of the parameter p. is then given by

M;=l+pn(p:p:–l)

and variations in p. once again provide expanded circular

areas of convergence.

It should be noted that all the modifications to the

update algorithms discussed in this paper can be used

simultaneously, i.e., distributed elements may be added to

lumped identity networks and so on. However, as the

examples in Section V illustrate, most circuits can be

analyzed using only the basic voltage and current update

algorithms.

IV. COMPARISON WITH OTHER METHODS

Only two methods in the literature satisfy the require-

ment of convergence under general conditions, namely

Kerr’s [5] multiple reflection method and the update ap-

proaches described here. A convergence comparison for a

particular example has been previously reported [7] be-

tween these two methods. More generally, the convergence

rates of the update approach may be expected to be

superior to that of the multiple reflection approach. Typi-

cally, the impedance of microwave circuits will approach

either open or short-circuit conditions with increasing

frequency. Such conditions enhance the performance of the

two update methods whose convergence rates are a direct

function of the proximity of the impedance ratios to the

origin, i.e., the proximity of the linear impedances to open

and short circuit conditions. In direct contrast, the multiple

reflection approach performs optimally under conditions

of match at high frequency; such conditions are unlikely to

be found in practice irrespective of the choice of the

impedance parameter Z..

V. EXAMPLES

Three examples are given here to demonstrate the gener-

ality and flexibility of the voltage and current update

algorithms. An example illustrating the voltage update

method has already been reported [7]. The examples given

here report numerical analyses of the pumping of various

solid-state diodes, each of which is post mounted in wave-

guide conditions as shown in Fig. 8. The equivalent circuit

of Eisenhart and Khan [8] is used in each case to determine

the embedding impedances seen at the post mount termi-

nals. A simple pi-circuit satisfactorily accounts for the

effects of packaging in each diode (Fig. 9).

A. Varactor Diode Pumping Circuit

This example illustrates the nonlinear analysis of the

pumping of a varactor diode in the X-band waveguide

circuit given above (Fig. 8) for use in the accurate predict-

ion of parametric amplifier performance. An accurate

calculation of the harmonic components of the elastance

waveform is essential for successful investigation of para-

metric amplification where small circuit changes in the

harmonic terminating impedances can lead to substantial

changes in operating performance. Matching of the diode

to the waveguide was achieved using a variable short

circuit and the variable inductive iris placed at a fixed

distance from the post plane. An ideal filter presenting a

short circuit at all harmonics of the fundamental pump

frequency was used to confine power losses at the harmonic

frequencies to the diode series resistance. The packaging

and diode details are given in the caption to Fig. 10.

The strategy employed in the computer analysis of the

above circuit can be divided into three major steps:

1)

2)

3)

the conditions required to match the nonlinear diode

to the waveguide at the pump frequency of 10 GHz

were determined;

equivalent circuits, valid at the diode terminals look-

ing outwards into the waveguide, are determined for

the fundamental and its harmonic frequencies;

the results of step 2) are combined with the diode

capacitance characteristic, and fed into the nonlin-

ear circuit analysis program described above.

Due to the large waveguide impedances present in the

linear circuit, a current update solution was necessary for

convergence. All p. were set to unity and convergence was
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Fig. 8. Waveguide mount circuit used for the three solid-state diodes
analyzed here.

--r%-
o L 1 0

Fig. 9. Equivalent circuit to represent the effects of diode packaging,

25~

(a)

.SO L

(b)

Fig. 10. Varactor diode junction waveforms: (a) terminal voltage; (b)
terminaf mrrrent. The parameters of the varactor diode analyzed were
R~ = 4.0 Q, Co= 0.5 pF, @= 0.6 V, y = 0.5. The package parameters
were C’ = O2 pF, C, = 0.05 pF, Lp = 0.9 nH. The bias voltage used was
–2.0 +,

achieved in 30 iterations. Following Kerr [5], convergence

was deemed to have occurred when the harmonic imped-

ance ratios were within 0.5 percent of unity. To obtain the

varactor junction voltage from the known diode current

(i.e., VN(t) from lN(t)), a nonlinear integration of the

varactor equation was performed using the classical

Runge–Kutta algorithm. Only one iteration was required

here since the integration constant may be determined

from dc bias constraints.

Fig. 10 shows typical varactor diode current and voltage
waveforms. The almost sinusoidal diode current reflects the

relatively large waveguide impedances at the pump

harmonic frequencies. The elastance waveform may be

Fourier analyzed as follows:

S(t)= j SneJn@t.

(a)

(b)

Fig. 11, Mixer diode junction waveforms: (a) terminal voltage; (b)
terminal current. The parameters of the mixer diode analyzed were
I,,, =8 X10-’5 A, (q/qkT)=39 V-’, R,=l.27 Q, CO=O. I pF, +=
0.85 V, y = 0.5. The package parameters were Cp= 0.02 pF, C,= .002
pF, Lp = 0.08 nH.

TABLE I
FIARMONIC ELASTANCE VALUES

(REFERRED TO DC ELASTANCE VALUE)

n I sn/so]

1 0.33
2 3.OX 10-~

3 3.OX 10-5

The harmonic elastance coefficients for the waveforms

shown in Fig. 10 are given in Table I. An extensive analysis

[10] of the above varactor diode pumping situation has

shown the values in Table I are fairly typical unless the

post geometry is such as to create resonant conditions at

the pump frequency.

B. Schottky-Barrier Diode Mixer

Mixer waveform analyses are an important application

of nonlinear analysis techniques. Held and Kerr [9] and

Kerr [6] have completed comprehensive investigations of a

variety of mixer circuits but have relied on an experimental

determination of the embedding impedance. In this exam-

ple, analytical determination of the mount impedance is

carried out using the Eisenhart” and Khan [8] equivalent

circuit. This circuit was analyzed in a similar fashion to the

varactor circuit. For simplicity, the matching network ele-
ments, namely the ideal filter and the iris in Fig. 8 are

removed. The diode waveforms were numerically analyzed

for conditions of 60-GHz excitation in a 50–75-GHz

standard waveguide. The diode parameters, given in the

caption to Fig. 11, are for a typical Schottky-barrier diode

used in millimeter-wave mixers [11].
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Fig. 12. IMPATT diode equivalent circuit used in the analysis showing
the connection to the embedding network and the position of the
linear–nonlinear circuit interface.

TABLE 11
CALCULATEDMIXER CONVERSIONVALUES

n GJ-’ Cn X 10–’3 F

o 0.0808 1.4155
1 0.1839 +J.6721 0.4247–J. 1364
2 0.567 –J.5452 –0.246 ‘J, 1077
3 – ,0195 +j.0522 –.0504–J.0396

As before, the current update method was used due to

the large harmonic impedances presented by the linear

waveguide circuit. Fig. 11 shows the diode current and

junction voltage waveforms obtained from the nonlinear

analysis program. 150 iterations were required for conver-

gence using 0.75 for all p.. As in the varactor diode

example, convergence was deemed to have occurred when

the harmonic impedance ratios were within 0.5 percent of

unity. To derive VN(l) each time from the current lN(t)

required a nonlinear integration due to the time-vaging

capacitance. Due to the forward voltage saturation in the

exponential diode, generally only three iterations were

required to obtain a periodic solution. The Fourier conduc-

tance and capacitance waveform coefficients necessary to

compute the mixer admittance matrix [6], [9] are given in

Table II.

The nonlinear analysis update methods have been ex-

tended to the case of more than one nonlinearity. This

theory has been used to study subharmonic mixer circuits,

the results of which have been reported [12], [13].

C. Negatioe Resistance IMPATT Mixer

A numerical pump analysis technique of this type is

essential for investigation of IMPATT negative resistance

mixers. The nonlinear voltage–current relation in the IM-

PATT diode can be analyzed using the voltage update

method, together with the IMPATT model developed by

Gupta [14] from the Read equations (Fig. 12). The Gupta

model, although valid for arbitrary waveforms, does not

model the effect of the back bias effect explained by

13rackett [15]. Furthermore, although Gupta states the

parameter V~ does not enter into the RF performance

directly, it may be shown [16] that V~ depends on both

frequency and the RF signal level and thus is not constant.

— I

J.6,

Fig. 13. Variation of the injected current 1, and the IMPATT terminal
voltage VT with time. The parameters of the IMPATT diode analyzed
were: Idc = 100 mA, 7d= 35 ps, La = 1.4 nH, Cd= 0.35 pF. The package
parameters were CP= 0.20 pF, C,= 0.05 pF, Lp = 0.90 nH.

However, it is a useful starting point for an IMPATT

waveform analysis.

The nonlinear inductor and current source in the model

are defined by

1,(2) = JJJc(r’)dt’-It(t)

where

IC

I dc

I,

Td

La

As

injected current in the IMPATT diode,

dc IMPATT diode current,

“memory” current source in the IMPATT model,

transit time for the drift region in the IMPATT

diode, and

IMPATT avalanche inductance.

with the preceding examples, the linear equivalent

circuit includes the effects of both packaging and the

waveguide post mount. As with the Schottky-barrier diode

mixer, the matching elements are ignored. Pumping at 8

GHz in an X-band waveguide was studied using the typical

IMPAT’T diode parameters [14] shown in the caption to

Fig. 13.

The nonlinear circuit is composed of only a portion of

the IMPATT ‘model. As Fig. 12 shows, the two depletion

capacitances are assigned to the linear circuit. Due to the

shorting action of these two capacitances, the linear imped-

ances are small at high frequencies and the voltage update

approach was therefore successful. Convergence was ob-

tained in 7 iterations with all p. values being unity, the

convergence criterion being the requirement that the

harmonic impedance ratios were within 0.5 percent of

unit y. Obtaining the nonlinear current lN( t), given the

IMPATT voltage VN(t), requires an inversion of the above

differential equation using the Runge-Kutta method. Such

an operation required only one iteration, the dc bias con-

straints determining the value of the integration constant.

Typical waveforms at 8 GHz are shown in Fig. 13, the
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IMPATT impedance at the fundamental frequency

– 11.O-j65.9 Q

VI. CONCLUSIONS

being

This paper has investigated the factors affecting the

convergence of the voltage and current update approaches

previously reported [7]. With the aid of the convergence

formulas developed in this paper, a suitable iteration tech-

nique may be chosen prior to the execution of the com-

puter program. The effect of the convergence parameter

has been illustrated graphically on a convergence diagram.

The multiple reflection technique of Kerr [5] has been

shown to be a special case of the more general technique

described in this paper; its convergence properties are

shown to be dependent on the transmission line imped-

ance, enabling an optimum value to be chosen, Three

solid-state diode pumping examples, together with a theo-

retical example, show the potential of the voltage update

and current update approaches in numerical pumping

analysis.
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