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Abstract —This paper presents an efficient technique for the numerical
determination of voltage and current waveforms when a microwave circuit
containing one or more nonlinear elements is excited by a single frequency
source. The approach described here is readily applied to microwave
. networks represented by a large number of equivalent circuit elements,
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either lumped or distributed. A significant feature of this paper is the
detailed investigation of the problem of convergence, using this new
technique. The generality of the technique is illustrated through its applica-
tion to studies of the excitation of varactor, Schottky-barrier, and IM-
PATT diodes in waveguide circuits. In addition, the relationship of this
method to the multiple reflection approach is discussed and the conver-
gence mechanism of this reflection technique is studied.

I. INTRODUCTION

HIS PAPER reports a general method for the analysis
of microwave circuits which contain a sinusoidal source
and one or more nonlinear devices. It is applicable to the
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study of a wide range of microwave circuits including
mixers, parametric amplifiers, and harmonic generators. A
special feature of the approach presented here is its de-
tailed consideration of the problem of convergence in the
iterative solution process, and its provision for modifica-
tion of the general procedure to facilitate convergence with
any specified circuit.

The analysis of this class of microwave circuit has relied,
in the main, upon the short-circuit or open-circuit assump-
tions, pertaining to the impedance of the circuit, at
harmonics of the excitation frequency, viewed from the
(single) nonlinear element terminals. Such an assumption
greatly simplified the analysis, since it leads to sinusoidal
voltage or current flowing through the nonlinear element.
Unfortunately, this assumption can rarely be justified in a
practical microwave circuit, due to the periodicity of dis-
tributed-element impedances as well as to multimode prop-
agation at harmonic frequencies. Thus in the general case,
both voltage and current through the nonlinear element are
nonsinusoidal, when the circuit is excited by a sinusoidal
source.

The determination of these nonsinusoidal waveforms
will have a direct influence on computation of the conver-
sion loss (or gain) and noise performance of microwave
mixers, the stability and noise properties of parametric
amplifiers, and the efficiency of harmonic generators. To
an increasing extent, circuits are being designed using a
multiple number of nonlinear elements (e.g., subharmoni-
cally pumped balanced mixers), and studies are being
carried out using a device representation which includes
several nonlinear elements (e.g., junction resistance and
capacitance in a Schottky-barrier diode, series resistance
and junction capacitance in an expitaxial varactor). When
the nonlinear element is embedded in a circuit containing a
small number of lumped linear elements, the nonsinusoidal
waveforms can be determined by a time-domain integra-
tion of the network equations, carried over a sufficient
number of cycles to allow steady-state conditions to be
attained. However, this approach is impractical for most
realistic microwave circuits, where the equivalent circuit of
the linear network may well contain a large number (e.g.,
hundreds) of lumped and distributed elements. For this
reason, in recent years, other numerical approaches have
been developed for the accurate study of the excitation of
nonlinear microwave circuits. These methods divide broadly
into two categories: time-domain solutions, and the
harmonic balance approach.

Time-domain solutions were initiated by Fleri and Cohen
[1] who studied pumped resistive mixer diode waveforms.
Their analysis, while it indicates the voltage waveform is
far from sinusoidal, is highly simplified. In particular, the
pump-source equivalent circuit is taken as resistive, and the
complexities of diode packaging are largely ignored. The
generality of this approach was improved through the work
of Gwarek [2] who was able to replace an arbitrary em-
bedding network by a single lumped-clement network in
series with a set of appropriately phased, harmonically
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related voltage sources; convergence problems, however,
occur with this approach.

Harmonic balance approaches combine a Fourier analy-
sis for the linear embedding network with a time-domain
approach for the nonlinearity. An iterative procedure is
then devised which balances (or equalizes) the harmonics
in both the nonlinear and linear circuits. With the assump-
tion of linear junction capacitance, Egami [3] analyzed a
pumped mixer diode but found the convergence properties
deteriorated significantly when more than two or three
harmonics were considered. Gupta and Lomax [4] attacked
the diode pumping problem by employing a variation of
the harmonic balance approach in which voltage waveform
estimates are updated until a stationary solution is
reached; convergence problems appeared and remained
unsolved. Kerr [5], [6] has achieved convergence for a wide
range of circuits using the multiple reflection method,
which requires insertion of a transmission line between the
nonlinear and linear sections of the circuit. However, the
complexity of the Kerr calculations together with the desire
for deeper understanding of the convergence process,
motivate further investigation. Hicks and Khan [7] have
studied the problem by introducing a set of dual update
algorithms together with a convergence parameter. Based
on experience, satisfactory convergence rates are obtained
by this method.

None of the above methods has yet provided a detailed
convergence assessment to assist the user by providing
prior information on the likelihood of convergence. It is
clear that for the purposes of efficient automated nonlinear
computation, the analysis algorithm and convergence
mechanism should be thoroughly understood.

The purpose of this paper is to further develop and
expand the method previously presented [7], in order to
provide a detailed convergence assessment which will assist
the user by providing prior information on the likelihood
of convergence. The insight gained by this means is prere-
quisite to efficient automated computation of nonlinear
microwave circuit behavior.

II. NUMERICAL ANALYSIS METHODS

A. Voltage Update Method

The method described here is applicable to the analysis
of the general circuit shown in Fig. 1, where a network
containing linear and nonlinear elements is excited by a
sinusoidal source E(¢). As shown in Fig. 1, the circuit is
divided into two parts, one of which contains the nonlinear
elements (as well as some linear elements for convenience)
while the other part contains the remaining linear elements
and the exciting source.

The analysis begins with selection of an estimated V(1)
value, designated V;"(¢); this value is usually taken at the
exciting frequency, without harmonics, and may be found
by an approximate calculation. Using V;"(¢), the corre-
sponding periodic current 7¥(¢) is found by a fourth-order
Runge-Kutta method, unless there is a suitable analytical
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expression available, Typically, 128 points are considered
in the computation, allowing consideration of harmonics in
IN(t) up to the sixteenth order with minimal truncation
error in the Runge—Kutta integration.

Putting If(¢1)= — IY(¢), we can use the fast Fourier
transform to obtain IF(w), which is applied to the linear
network. Vj(w) is found by superposition, having compo-
nents due to I{(w) and to the applied E(¢); the calculation
is quite straightforward, since the network is linear.

Using an inverse fast Fourier transform we form Vi(¢)
and compare it with the initial Vj¥(¢). If the difference is
significant, the iteration proceeds with a new estimate of
VN(t), designated by V{(¢), and continues until the dif-
ference is sufficiently slight. The iteration procedure is a
stationary one and therefore V¥(¢)=Vi(£)=V{(r) at
solution. :

It remains now to specify how the new estimate is
" determined at the beginning of each successive iteration. At
the kth iteration, consider a general

) M
V= 3 Ve
n=—M
(where M has been set by the Runge—Kutta calculation)
and the corresponding

M
Vi()= X Ve
n=—M
which is determined by the process described above. The
next iteration is carried out with a V¥, (¢) having compo-
nents

I/(]I:,-Fl)n = ankl;t + (1 - pn)VI?r,l

where the p, values are determined by convergence consid-
erations, discussed below, and 0 < p, <1. The use of a set
of p, values, described here as “convergence parameters”,
is a distinguishing feature of the method presented here
and is an essential feature in ensuring convergence to the
required solution.

1) Convergence: Let the true value of the voltage V(¢)
be .

M
VT(t) — 2 I/nTejnwt.
n=—M
Then V) =V," +¢,, where ¢, is the error term. Likewise
Vii+ D =V, + €41y, after one gdditiona! itefation. ‘
V(1), by definition, must satisfy the circuit constraints
and thus

ZL
I/nT:V;,S_ __nN'VnT
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where

contribution due to the source voltage,

impedance presented by the linear network at the
nth harmonic frequency in the absence of any
source, and

impedance presented by the nonlinear network at
the nth harmonic frequency as shown in Fig. 1.

Clearly, the value of Z) will vary during the iteration
process by virtue of the nonlinearity. With each iteration,
ZY changes until, in the case of the harmonics free from
source voltages, it reaches — ZL at the solution. For the
purpose of the convergence analysis, it will be assumed
that the iterations are close to the solution and thereby ZV
changes only slightly. This strategy may be justified in two
ways. Firstly, an iteration close to the solution should not
diverge. Secondly, for iterations far from the solution, a
convergence region (discussed below) sufficiently large to
cover any variations in the Z may be obtained by ap-
propriately setting the convergence parameter p,. Now

ZL
L _yS__"n N
an—‘Vn Z,I,Van
. L
=5 -2 (VT+e¢
n Z,IIV( n kn)

L
—_ n T
- ZNek"+I/;’
n

+(1_ pn)(VnT;_*—ekn)

n

ZL
=P T Z_’;Vekn + VnT

which yields directly, by substituting for V(I,f +1yms €t yn =
MPe,, where M) is the error magnification factor for the
nth harmonic component with the voltage update method,
and is given by

M=1+p,

-1-Z).
zy

It is evident that we require | M,)| <1 for all harmonics
of interest to assure convergence of the iterative process.
The speed with which convergence is obtained will also
increase as the value of | M| is decreased.

Note that the set of ZY values will vary during the
iteration process, because of the nonlinearity of the circuit
elements. Hence any estimate of ZY for convergence de-
termination should be made on a “worst case” basis.

Insight into the choice of p, for convergence may be
obtained by plotting a set of curves of |M,)|=1 on an
impedance ratio plane defined by W, = ZL/ZY as shown
in Fig. 2. The curves are a set of circles with center
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(—1+(1/p,),0) and radius 1/p,, proceeding to the bhalf-
plane Re(W,)= —1 in the limiting case of p, — 0.

Using this diagram, the required p, values for conver-
gence are readily found, plotting W, values for the harmon-
ics of interest, and selecting a p, set so that each W), point
lies within the p, circle. In practice, it is usually possible to
select a convergence parameter p which is used for all
values of n. It is also possible to change the value of p as
the calculation proceeds, and Z more closely approaches
its true value; the purpose of this change is to make the
values of the | M| set as small as possible.

B. Current Update Method

There are many instances where the form of the nonlin-
ear device characteristics is such that it is preferable to use
current I¥(¢) as the independent variable rather than volt-
age V(). The resulting current update approach proceeds
as the dual of the voltage update method, and is hence not
described in detail.

It gives rise to an error magnification factor M/ defined
by

with the value of M/ determined by an approach similar to
that used for M,).
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We find

M;=1+p,

ZN
£ ).

Zy
Hence we can plot a set of curves of |[M;|=1 on an
impedance ratio plane defined by ZY/Z =1/W,. The

curves on the 1/W, plane are similar to those shown in
Fig. 2 on the W, plane, and the selection of the p, set

_ values proceeds in a similar manner to that for the voltage

update method. Note that if W, lies outside the circle of
convergence for a specified p,, with the voltage update
approach, it will lie within the convergence circle for the
same p, value if the current update method is used.

C. Selection of the Convergence Parameters p,

In both update methods, there is an optimum real p,
which minimizes the magnitude of each M,. By simple
calculation, this p, is given by cos@/r, where 6 and r are
defined in Fig. 3. However, the methods may be further
extended by permitting p, to become complex. This intro-
duces the ability to perform phase rotations in the W,
plane. With this modification, given any W,, M, may in
principle be set to zero. However, it should be noted that
the error will not be zero following this iteration as the
nonlinearity will present a different Z" at the new oper-
ating point. Thus, although the new error is nonzero, it is
considerably reduced.

It is clear the calculations of Z» are necessarily ap-
proximate by virtue of the nonlinearity. Thus, as the itera-
tions proceed, the W), points will move across the plane. In
the case of harmonics above the fundamental, the W,
points will all move towards the solution point (—1,0), a
condition which may be verified by Kirchoff’s circuit laws.

For most practical situations, the following guidelines
will ensure convergence. An examination of the linear
circuit impedances at the high harmonics will determine
which of the update methods should be used, i.e., large
linear circuit impedances above the fundamental require
the current update approach. Having selected the ap-
propriate update approach, each complex p, can be calcu-
lated such that M, is set to zero. However, tests have
shown that the advantages of using complex p, over real p,
are slight, resulting in only marginal improvements in
efficiency in practical situations. Moreover, rather than use
the optimal real p, given in Fig. 3, a value of p, which is
valid for all n, may be used. Although this situation is
clearly not optimal, this simplification has been found to
produce relatively efficient convergent conditions in most
practical situations encountered.

III. IpENTITY NETWORKS

Modifications of the basic harmonic balance approach
are possible by introducing a special class of networks at
the nonlinear-linear circuit interface (Fig. 4). The purpose
of these networks is to preserve the overall circuit perfor-
mance while altering the harmonic impedance ratios to
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improve the convergence rate. The term “identity network”
is introduced to describe networks which satisfy this prop-
erty. Identity networks may be subdivided into two classes,
viz, lumped and distributed.

A. Lumped Identity Networks

Two examples of lumped identity networks are shown in
Fig. 4. To utilize them, these networks are bisected with
one of the identity elements assigned to the linear one-port
and the matching identity element included in the nonlin-
ear network. For ease of nonlinear circuit computation, the
network depicted in Fig. 4(a) is suitable for voltage update
solutions while that of Fig. 4(b) is more convenient to use
with current update solutions. These networks maintain the
overall circuit performance but alter the harmonic imped-
ance ratios and thereby the convergence rates.

The following example illustrates the use of a current
update lumped identity element. A nonlinear element is fed
from a simple resistive voltage source shown in Fig. 5(a).
The resistance of .the nonlinear element consists of a fixed
10 © together with a current modulated value of 10 Q,
where I is in amps.

It would be advantageous to use a current update ap-
proach so that the nonlinearity could be handled without
resorting to the use of quadratic equations. Without mod-
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ification, the circuit requires a voltage update approach as
the harmonic impedance ratio R“/R" is approximately 0.1
for all harmonics. However, the problem may be trans-
formed to a current update problem with an identity
negative resistance of the order of —10 & as shown in Fig.
5(b).

The circuit was analyzed as described and Fig. 6 depicts
the dependence of the current update convergence rate on
the identity element value. For small values of Ry, the
circuit problem is a voltage update candidate and therefore
the solution diverges on using the current update algo-
rithm. Larger values of R, however, ensure current up-
date convergence with an optimum value of R, being
approximately — 10 £.

B. Distributed Identity Elements

Distributed identity elements may also be used in a
similar way to their lumped counterparts. The Kerr [5]
multiple reflection method of circuit analysis may be re-
garded as an update harmonic balance method in which
use of these distributed elements is exploited. A lossless
transmission line is inserted in cascade at the circuit inter-
face (Fig. 7), its electrical length being set at an integral
number of pump wavelengths to preserve the steady-state
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solution. The presence of a distributed element requires
that both the voltages and currents be updated simulta-
neously in the iteration process. Kerr [5] details the algo-
rithm necessary to compute the voltages, currents, and
propagating waves. By suitably rearranging Kerr’s equa-
tions, it can be shown that successive voltage and current
iterates are given by

V4
vy — L NVN+'_‘_O"_I/nS
(k+Dn 0.0 Vicn ZO+ZV{‘
Zo Vs,
(Zo+Zi N2+ 2Y) "

N — L NTN
I(k+1)n_pnpnIkn+

The reflection coefficients are defined in the usual way,
viz.,

PN: Z,],V—’ZO
" ZN+z,
Lo Zi=Z
Y ZE+ Z,

where Z,, is the characteristic impedance of the transmis-
sion line. Clearly, the successive errors as convergence is
approached are given by

— LN
€k+1n — PnPn€in

and thus convergence is assured if the products plpl fall
within the unit circle. This condition applies for most
stable systems and thus the Kerr method has been reported
to have satisfactory convergence properties [6]. Since Z;, is
arbitrary, the convergence process can be optimized by
adjusting its value; from estimates of the range of values
taken by ZY during the iteration process, Z, would be
chosen such that the maximum value of the products
|pEpY | is minimized.

The parameter p, used in the basic update approaches
may also be introduced into the multiple reflection ap-
proach. The error magnification coefficient with the addi-
tion of the parameter p, is then given by

ME=1+p,(pkel —1)

and variations in p, once again provide expanded circular
areas of convergence.

It should be noted that all the modifications to the
update algorithms discussed in this paper can be used
simultaneously, i.e., distributed elements may be added to
lumped identity networks and so on. However, as the
examples in Section V illustrate, most circuits can be
analyzed using only the basic voltage and current update
algorithms.

IV. ComprARISON WITH OTHER METHODS

Only two methods in the literature satisfy the require-
ment of convergence under general conditions, namely
Kerr’s [5] multiple reflection method and the update ap-
proaches described here. A convergence comparison for a
particular example has been previously reported [7] be-
tween these two methods. More generally, the convergence
rates of the update approach may be expected to be
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superior to that of the multiple reflection approach. Typi-
cally, the impedance of microwave circuits will approach
either open or short-circuit conditions with increasing
frequency. Such conditions enhance the performance of the
two update methods whose convergence rates are a direct
function of the proximity of the impedance ratios to the
origin, i.e., the proximity of the linear impedances to open
and short circuit conditions. In direct contrast, the multiple
reflection approach performs optimally under conditions
of match at high frequency; such conditions are unlikely to
be found in practice irrespective of the choice of the
impedance parameter Z;.

V. EXAMPLES

Three examples are given here to demonstrate the gener-
ality and flexibility of the voltage and current update
algorithms. An example illustrating the voltage update
method has already been reported [7]. The examples given
here report numerical analyses of the pumping of various
solid-state diodes, each of which is post mounted in wave-
guide conditions as shown in Fig. 8. The equivalent circuit
of Eisenhart and Khan [8] is used in each case to determine
the embedding impedances seen at the post mount termi-
nals. A simple pi-circuit satisfactorily accounts for the
effects of packaging in each diode (Fig. 9).

A. Varactor Diode Pumping Circuit

This example illustrates the nonlinear analysis of the
pumping of a varactor diode in the X-band waveguide
circuit given above (Fig. 8) for use in the accurate predict-
ion of parametric amplifier performance. An accurate
calculation of the harmonic components of the elastance
waveform is essential for successful investigation of para-
metric amplification where small circuit changes in the
harmonic terminating impedances can lead to substantial
changes in operating performance. Matching of the diode
to the waveguide was achieved using a variable short
circuit and the variable inductive iris placed at a fixed
distance from the post plane. An ideal filter presenting a
short circuit at all harmonics of the fundamental pump
frequency was used to confine power losses at the harmonic
frequencies to the diode series resistance. The packaging
and diode details are given in the caption to Fig. 10.

The strategy employed in the computer analysis of the
above circuit can be divided into three major steps:

1) the conditions required to match the nonlinear diode
to the waveguide at the pump frequency of 10 GHz
were determined;

2) equivalent circuits, valid at the diode terminals look-
ing outwards into the waveguide, are determined for
the fundamental and its harmonic frequencies;

3) the results of step 2) are combined with the diode
capacitance characteristic, and fed into the nonlin-
ear circuit analysis program described above.

Due to the large waveguide impedances present in the
linear circuit, a current update solution was necessary for
convergence. All p, were set to unity and convergence was
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achieved in 30 iterations. Following Kerr [5], convergence
was deemed to have occurred when the harmonic imped-
ance ratios were within 0.5 percent of unity. To obtain the
varactor junction voltage from the known diode current
(i.e., VM1¢) from I™¢)), a nonlinear integration of the
varactor equation was performed using the classical
Runge—Kutta algorithm. Only one iteration was required
here since the integration constant may be determined
from dc bias constraints.

Fig. 10 shows typical varactor diode current and voltage
waveforms. The almost sinusoidal diode current reflects the
relatively large waveguide impedances at the pump
harmonic frequencies. The elastance waveform may be
Fourier analyzed as follows: ‘

S()y= 3 Seimr,
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Fig. 11. Mixer diode junction waveforms: (a) terminal voltage; (b)
terminal current. The parameters of the mixer diode analyzed were
Ly =8X107 5 A, (q/nkT)=39 V™!, R, =127 Q, C;=0.1 pF, ¢ =
0.85 V, y = 0.5. The package parameters were C, = 0.02 pF, ¢, =.002
pF, Lp =0.08 nH.

TABLEI
HARMONIC ELASTANCE VALUES
(REFERRED TO DC ELASTANCE VALUE)

n 1S, /S
1 0.33

2 3.0x1073
3 3.0x1073

The harmonic elastance coefficients for the waveforms
shown in Fig. 10 are given in Table 1. An extensive analysis
[10] of the above varactor diode pumping situation has
shown the values in Table I are fairly typical unless the
post geometry is such as to create resonant conditions at
the pump frequency.

B. Schottky-Barrier Diode Mixer

Mixer waveform analyses are an important application
of nonlinear analysis techniques. Held and Kerr [9] and
Kerr [6] have completed comprehensive investigations of a
variety of mixer circuits but have relied on an experimental
determination of the embedding impedance. In this exam-
ple, analytical determination of the mount impedance is
carried out using the Risenhart and Khan [8] equivalent
circuit. This circuit was analyzed in a similar fashion to the
varactor circuit. For simplicity, the matching network ele-
ments, namely the ideal filter and the iris in Fig. 8 are
removed. The diode waveforms were numerically analyzed
for conditions of 60-GHz excitation in a 50-75-GHz
standard waveguide. The diode parameters, given in the
caption to Fig. 11, are for a typical Schottky-barrier diode
used in millimeter-wave mixers [11].
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Fig. 12. IMPATT diode equivalent circuit used in the analysis showing
the connection to the embedding network and the position of the
linear—nonlinear circuit interface.

TABLE IT
CALCULATED MIXER CONVERSION VALUES

n G ' C,xI107BF

0. 0.0808 1.4155

1 0.1839+1.6721 0.4247—.1364
2 0.567—1.5452 —0.246—).1077
3 —.0195+j.0522  —.0504—1.0396

As before, the current update method was used due to
the large harmonic impedances presented by the linear
waveguide circuit. Fig. 11 shows the diode current and
junction voltage waveforms obtained from the nonlinear
analysis program. 150 iterations were required for conver-
gence using 0.75 for all p,. As in the varactor diode
example, convergence was deemed to have occurred when
the harmonic impedance ratios were within 0.5 percent of
unity. To derive V™(¢) each time from the current 7¥(¢)
required a nonlinear integration due to the time-varying
capacitance. Due to the forward voltage saturation in the
exponential diode, generally only three iterations were
required to obtain a periodic solution. The Fourier conduc-
tance and capacitance waveform coefficients necessary to
compute the mixer admittance matrix [6], [9] are given in
Table II.

The nonlinear analysis update methods have been ex-
tended to the case of more than one nonlinearity. This
theory has been used to study subharmonic mixer circuits,
the results of which have been reported [12], [13].

C. Negative Resistance IMPATT Mixer

A numerical pump analysis technique of this type is
essential for investigation of IMPATT negative resistance
mixers. The nonlinear voltage—current relation in the IM-
PATT diode can be analyzed using the voltage update
method, together with the IMPATT model developed by
Gupta [14] from the Read equations (Fig. 12). The Gupta
model, although valid for arbitrary waveforms, does not
model the effect of the back bias effect explained by
Brackett [15]. Furthermore, although Gupta states the
parameter V), does not enter into the RF performance
directly, it may be shown [16] that V, depends on both
frequency and the RF signal level and thus is not constant.
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Fig. 13. Variation of the injected current 7, and the IMPATT terminal
voltage V with time. The parameters of the IMPATT diode analyzed
were: I3, =100 mA, 7, =35 ps, L, =1.4 nH, C, = 0.35 pF. The package
parameters were C, = 0.20 pF, C, = 0.05 pF, L, =0.90 nH.

However, it is a useful starting point for an IMPATT
waveform analysis.

The nonlinear inductor and current source in the model
are defined by

n)= ("),

[

L=+ " (0)dr=1(1)

T4 t—1y

I injected current in the IMPATT diode,

dc IMPATT diode current,

I, “memory” currént source in the IMPATT model,

7, transit time for the drift region in the IMPATT
diode, and

L, IMPATT avalanche inductance.

with the preceding examples, the linear equivalent
circuit includes the effects of both packaging and the
waveguide post mount. As with the Schottky-barrier diode
mixer, the matching elements are ignored. Pumping at 8
GHz in an X-band waveguide was studied using the typical
IMPATT diode parameters [14] shown in the caption to
Fig. 13,

The nonlinear circuit is composed of only a portion of
the IMPATT model. As Fig. 12 shows, the two depletion
capacitances are assigned to the linear circuit. Due to the
shorting action of these two capacitances, the linear imped-
ances are small at high frequencies and the voltage update
approach was therefore successful. Convergence was ob-
tained in 7 iterations with all p, values being unity, the
convergence criterion being the requirement that the
harmonic impedance ratios were within 0.5 percent of
unity. Obtaining the nonlinear current I™(¢), given the
IMPATT voltage V™(t), requires an inversion of the above
differential equation using the Runge-Kutta method. Such
an operation required only one iteration, the dc bias con-
straints determining the value of the integration constant.
Typical waveforms at 8 GHz are shown in Fig. 13, the
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IMPATT impedance at the fundamental frequency bemg
—11.0-;65.9 Q.

V1. CONCLUSIONS

This paper has investigated the factors affecting the
convergence of the voltage and current update approaches
previously reported [7]. With the aid of the convergence
formulas developed in this paper, a suitable iteration tech-
nique may be chosen prior to the execution of the com-
puter program. The effect of the convergence parameter
has been illustrated graphically on a convergence diagram.
The multiple reflection technique of Kerr [S] has been
shown to be a special case of the more general technique
described in this paper; its convergence properties are
shown to be dependent on -the transmission line imped-
ance, enabling an optimum value to be chosen. Three
solid-state diode pumping examples, together with a theo-
retical example, show the potential of the voltage update
and current update approaches in numerical pumping
analysis.
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